Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.26.453755

ABSTRACT

The SARS-CoV-2 pandemic causes an ongoing global health crisis, which requires efficient and safe vaccination programs. Here, we present synthetic SARS-CoV2 S glycoprotein-coated liposomes that resemble in size and surface structure virus-like particles. Soluble S glycoprotein trimers were stabilized by formaldehyde cross-linking and coated onto lipid vesicles (S-VLP). Immunization of cynomolgus macaques with S-VLPs induced high antibody titers and TH1 CD4+ biased T cell responses. Although antibody responses were initially dominated by RBD specificity, the third immunization boosted non-RBD antibody titers. Antibodies showed potent neutralization against the vaccine strain and the Alpha variant after two immunizations and robust neutralization of Beta and Gamma strains. Challenge of animals with SARS-CoV-2 protected all vaccinated animals by sterilizing immunity. Thus, the S-VLP approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.09.242917

ABSTRACT

The efficient spread of SARS-CoV-2 resulted in a pandemic that is unique in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in air mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. Thus, we described a mechanism potentiating viral capture and spreading of infection. Early involvement of APCs opens new avenues for understanding and treating the imbalanced innate immune response observed in COVID-19 pathogenesis


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL